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Abstract 

The Gleason theorem is proved for nonseparable Hilbert spaces under the assumption of 
the continuum hypothesis. 

For an axiomatical foundation of  quantum mechanics, see for instance Mackey 
(1963), Jauch (1968), Varadarajan (1968). The Gleason theorem is fundamental 
to characterize the states of  a physical system. The theorem has been proven by 
Gleason (1957) in the case of  a separable Hilbert space. In this paper we extend 
the proof to the nonseparable case. For that, we first consider an analogous 
theorem for states which are totally additive. (This has also been done by 
Guenin (footnote 1) and for the special case of  pure states by Gudder (1972).) 
With the aid of  the Ulam theorem (Ulam, 1930; Oxtoby, 1971) and assuming 
the continuum hypothesis we then show that every countably additive state is 
already totally additive. So, under the condition of  the continuum hypothesis, 
the Gleason theorem is also valid for nonseparable Hilbert spaces. 

Notations. Let H be an arbitrary Hilbert space. By L(H) we denote the 
lattice of all closed subspaces of/-/. For the lattice operations we use the 
symbols A and V. 

For M E L(H) let p M  denote the projection operator with range M. 
A map m:L(H) -+ [0, 1] with re(H) = 1 is called a countably additive state 

(c state) if 

rn(i~lMi) = i=~1 nl(Mi) (1) 
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for every sequence (M/)iE ~ of mutually orthogonal closed subspaces of / / ,  and 
it is called a totally additive state (t state) if 

m( V Ma) = ~ m(Ma) (2) 
a E I  a E l  

for every family (Ma)a~ I withMa_kM b i ra  4: b. 
The trace class T(H) of bounded operators of a nonseparable Hilbert space 

is defined in the same way as in the separable ease, i.e., W E T(H) if for every 
orthonormal basis (onb) {~0a la E I} of  H ~aEx (~OajW~Oa)is absolutely convergent 
and independent of the basis used. For a positive operator I4' (this implies that 
there exists an operator A with W = A ' A )  

tr W: = ~ (~galW~pa) = Z~ llA~all 2 (3) 
a E I  a E I  

exists and is independent of the basis used if ~,a~I(¢alW~oa) converges for some 
onb { ¢aia E l )  (cf. Schatten, 1970). 

For K E L(H) we define 

trKW: = ~ (~blW~b) (4) 
b e a  r 

where {ffblb E J} is an onb of K. 
WIK denotes the restriction of W to K. 
An operator W: H-+ H is called yon Neumann operator if W is bounded, 

self-adjoint, nonnegative and of trace class. We say W is normed if tr W = I. 

Proposition 1. Let H be a Hflbert space and m a t state on L(H). Then there 
exists a unique normed yon Neumann operator W with 

m(M) = tr pM w (5) 

for altM EL(H). 

Proof. Let {¢alaEI) be an onb of/-/. 
Then 

re(span ~a) = m(H) = 1 (6) 
a E l  

So there is a countable set D C I with 

m(span ~0a) = 0 for all a E I - D (7) 

We define 

K1 : = span {~ala ED} (8) 

K1 is a separable Hilbert space and according to the Gleason theorem it follows 
that there is exactly one normed von Neumann operator W~ E T(K1) such that 

m(M) = trK1pMw~ VMEL(K1) (9) 

By the definition 

W 1: = W~P KI  ( 1 0 )  
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we get a normed yon Neumann operator defined on the entire space H. 

( D'WI= aEI ~" (~Oa[[¥tlPKl~Oa)= a~D ~ (~°a[Wi~°a)= 1) (11) 

It remains to be seen that W 1 also describes m correctly for closed subspaces 
M of H which are neither contained in KI  nor in K~. 

Let M 2 be an arbitrary dosed subspace of H. We can find an onb of M2, 
which we complete to an onb o f / / ,  called (~b [b E J} 

K 1 has countably many basis vectors ~0 a. Each ~0a is represented by a count- 
able linear combination Z~= 1 ci~ i of vectors 4i. So there is a countable set 
C c J with 

K 1 C span {ffblb E C }  =: Kz (12) 

FromK1 CK2 it follows that 

m(K2) = 1 and m(K~) = 0 (1 3) 

K 2 is a separable Hilbert space. So there is a unique normed von Neumann 
operator W~ E T(K2) with 

m ( ~  = trx2 pMW'E V M e  L(K2) (14) 

W2 := W~P K2 

A special case of (14) is 

m(M) = trK2 pM V M E L(K1) (C L(K2)) (15) 
Clearly 

trK2 pM W2 = trxl pM W2 '¢ M E L(K 1 ) (16) 

On the other hand we have 

m(M) = trKxpMw1 V M EL(KI) (17) 

W1 [K1 and W2[K1 are both normed yon Neumann operators on K1. On account 
of the uniqueness stated in the Gleason theorem we can conclude 

Wl [K1 = W211,:l (18) 

trK~P, K2pMw: =re(M) = 0 V MEL(K~ AK2) (19) 

Therefore 

Since 

we have 

W2 iK~^K2 = 0 (20) 
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and together with (18) 

W1 = W2 

From 

M 2 = span { ~b [ b E F} (where F C J )  

(22) 

(23) 

it follows that 

M e = span {~blb E F N  C} V span {~b Ib EFC~ (J - 6)} 

hence 

Me = (Me AKe)  V (Me AK½) 

This implies 

So we have shown 

m(Me) = re(M2 A Ke) + m(M2 A KS) = 

= m(M 2 A Ke) = 

= trz-zP M2 W2 = 

= trHP v2  Wa 

m(M)=trpMw1 V MEL(I-I) 

(24) 

(25) 

(26) 

For the next theorem, we need some definitions (cf. Oxtoby, 1971). 
A cardinal number A is called weakly inaccessible if 
(a) A is greater than 1% (1% denotes the cardinality of the set of all integers) 
(b) A is not a successor (that means there is no cardinal B such that A is 

the smallest cardinal greater than B) 
(c) i fB < A ,  then A is not the sum of B cardinals each less than A. 

A cardinal A is said to b_~einaccessible if A is weakly inaccessible and 
(d) i fB < A ,  then ~ - )  < A  (where P(B) denotes the cardinality of the 

power set of B). 
We call a cardinal number an Ulam number if it is not inaccessible. 

The cardinals which can occur as dimensions of nonsepaLable Hilbert spaces 
in physics, c (the cardinality of the reals) and perhaps 2c(2 m := P(m)) are both 
Utam numbers. 

In the following, we will use the Ulam theorem. Let/~ be a finite measure 
defined on all subsets of a set X with cardinality A, such that B is not weakly 
inaccessible for all cardinals B ~<A. Then/.t vanishes identically if it is zero 
on every subset containing only one element. 

One verifies easily that this is equivalent to the statement: Then there is a 
countable subset C of X with 

/~(X- C) = 0 (27) 
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If one accepts the continuum hypothesis (saying e = R1 ) or only the weaker 
assumption: no cardinal A ~ e  is weakly inaccessible, then the Ulam theorem 
also holds for all sets the cardinality of which is an Ulam number. 

Since the continuum hypothesis is independent of  the other axioms of 
set theory (cf. Cohen, 1966) and it simplifies many set theoretical arguments, 
it is advantageous and harmless to accept it for physics and to add it to the 
axioms of  set theory. 

Proposition 2. Let H be a Hilbert space. If the cardinality of an onb (and 
this implies of every onb) of  H is an Ulam number (especially c (or 2e)) then 
every e state is totally additive. 

Proof. Let (J],la)aE I be a family of mutually orthogonal closed subspaces of  
H. We choose an onb in every Ma and complete their union to an onb {~b [b ~ J }  
of  H. It is easy to verify that by 

# z ( A ) : = m ( s p a n { ~ b l b E A ) )  ifA=Pq~ 

;t(~) := 0 (28) 

a finite measure on/'(O r) is defined. Employing the Ulam theorem we get a 
countable set D C J with 

/~(J - D) = 0 (29) 

We define 

J '  := {bEJ[3a G / s o  that ~t, CMa} 

B := (aEIlMa/~ span {~bibED} =/=~) (30) 

Then it follows that 

m( V Ma) = m(span {~bib E J ' } )  = 
a E I  

= ~ ( : ' )  = 

= U((J' 6~ D) U (J'  ~ (J  - D)))  = 

= u ( S '  n D)  = 

= re(span {~bib E J '  ND})  = 

= m ( v M ~ )  = 

: E m(Mo)= 
a ~ B  

= ~ m(Ma) 
a E I  

(31) 
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